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Spin splitting of photoelectrons in p-type and electrons in n-type III-V Mn-based diluted magnetic semi-
conductors is studied theoretically. It is demonstrated that the unusual sign and magnitude of the apparent s-d
exchange integral reported for GaAs:Mn arises from exchange interactions between electrons and holes bound
to Mn acceptors. This interaction dominates over the coupling between electrons and Mn spins, so far regarded
as the main source of spin-dependent phenomena. A reduced magnitude of the apparent s-d exchange integral
found in n-type materials is explained by the presence of repulsive Coulomb potentials at ionized Mn acceptors
and a bottleneck effect.
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I. INTRODUCTION

Owing to the possibility of gradual incorporation of mag-
netism to the well-known semiconductor matrices, diluted
magnetic semiconductors �DMSs� �Refs. 1–4� offer unprec-
edented opportunity for examining quantitatively the origin
of spin dependent couplings between band carriers and elec-
trons localized on the open d shell. According to thorough
studies of Mn-based II-VI DMSs, the spin-dependent cou-
pling of the band-edge electrons and Mn spins is character-
ized by N0�=250�60 meV,2 where N0 is the cation con-
centration and � is the s-d exchange integral. The above
value of N0� is in a full accord with the notion that spin-
dependent effects in the conduction band of a tetrahedrally
coordinated DMS originate from the intra-atomic potential
s-d exchange interaction. Indeed, the corresponding s-d ex-
change energy is 392 meV in the case of free Mn1+ ions,5

and in a DMS it is a subject of up to twofold reduction by a
covalent admixture of the anion s-type wave function to the
Kohn-Luttinger amplitude at the conduction-band edge. In
accord to this insight, N0�=0.3 eV results from ab initio
computations for n-�Ga,Mn�As.6

Surprisingly, the recent comprehensive studies of quan-
tum wells of highly dilute paramagnetic Ga1−xMnxAs �x
�0.13%� suggest antiferromagnetic N0�=−23�8 meV
�Refs. 7 and 8� or −20�6 meV �Ref. 9� for photoelectrons
at the band edge. These observations have not been ex-
plained by the recent theory,6 and appear to challenge the
time-honored notion that the spin-dependent coupling be-
tween the electrons and Mn spins in a tetrahedrally coordi-
nated DMS originates from the necessarily ferromagnetic
intra-atomic potential s-d exchange.

The starting point of our approach is the realization that
the density of Mn acceptors in the studied8,9 quantum wells
of GaAs was more than one order of magnitude lower than
the critical value corresponding to the insulator-to-metal
transition and the onset of the hole-mediated ferromagnetism
in this system. Furthermore, a relatively high growth tem-
perature resulted in a small concentration of compensating
defects. Accordingly, the conduction-band photoelectrons in-

teracted with complexes consisting of both Mn and hole
spin, d5+h, which are bound by the electrostatic potential
and mutually coupled by a strong antiferromagnetic p-d ex-
change interaction. We develop here theory of the exchange
interaction for such a case and show that it explains, with no
adjustable parameters, the sign reversal of the apparent s-d
exchange integral. Furthermore, we demonstrate that an as-
sumption about the heating of the Mn spin subsystem, in-
voked in order to describe the observed dependence of
electron-spin splitting on the magnetic field,7,8 can be relaxed
within the present theory.

Independently, much reduced spin splitting has been
found for electrons injected to InAs quantum dots containing
a neutral Mn acceptor.10 This observation is consistent with
the invoked here mutual cancelation of the s-d and s-p ex-
change energies.

Another case where the presence of bound holes is of
primary importance is the Bir-Aronov-Pikus relaxation of
electron spins. Surprisingly, it has recently been found11 that
the electron spin-relaxation time in GaAs:Mn is by two or-
ders of magnitude longer comparing to GaAs:Ge, challeng-
ing a general belief that magnetic impurities are efficient spin
coherence killers. This puzzling observation has been suc-
cessfully interpreted11 in accord to the theory presented
here.12

While our model elucidates the origin of the anomalous
sign and magnitude of the apparent s-d exchange integral for
photoelectrons in p-type DMSs, it does not explain a reduced
magnitude of this energy observed by electron-spin reso-
nance in GaN:Mn,13 and by electron spin-flip Raman scatter-
ing in GaAs:Mn.14 We examine also this issue and demon-
strate that the presence of a bottleneck effect and of a
repulsive potential associated with ionized Mn acceptors in
compensated III-V Mn-based DMSs leads to a sizable, Mn
concentration dependent, reduction of the s-d exchange inte-
gral.

Our paper is organized as follows. In Sec. II we discuss a
comparison of our theoretical results to experimental find-
ings, delegating a detail description of the theory to subse-
quent sections. Thus, in Sec. III we present the adopted
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model of the Mn acceptor in GaAs, including the form of the
envelop functions and relevant Landé factors. This is fol-
lowed by the derivation of the exchange integral Jeh describ-
ing the spin-dependent interaction between band electrons
and bound holes, considering first the short-range �Sec. IV�
and then the long-range part �Sec. V� of the electron-hole
coupling. Finally, in Sec. VI we examine the effect of com-
pensation on the magnitude of the apparent s-d exchange
integral. Section VII contains a summary and outlook.

An important aspect of our theory is that the exchange
integrals describing the coupling between conduction-band
electrons and holes bound to acceptors can be expressed,
with no adjustable parameters, by the acceptor envelop func-
tions f�r� and g�r� as well as by the exchange splitting � and
the longitudinal-transverse splitting �LT of the bulk free ex-
citons.

II. EXPLANATION OF THE OBSERVATIONS

The Mn acceptor complex can be described within the
tight-binding approximation15 or in terms of the Baldareschi-
Lipari spherical model as proposed by Bhattacharjee and
Benoit à la Guillaume16 for GaAs:Mn and more recently em-
ployed to study impurity band effects.17 We determine within
this model how polarizations of a Mn spin S=5 /2 and of a
hole total angular momentum J=3 /2 depend on the magnetic
field B and temperature T. We then derive the form and mag-
nitude of the exchange interactions between conduction-band
electrons and holes bound by Mn acceptors, extracting rel-
evant electron-hole s-p exchange parameters from the previ-
ous experimental studies of the free exciton in GaAs.

The Mn acceptor Hamiltonian for the magnetic field along
z direction reads,

H = �J · S + �BB�gMnSz + ghJz� , �1�

where �=5 meV is the experimentally determined p-d ex-
change energy in the Mn acceptor,16 gMn=2.0, and gh=0.75
the is hole Landé factor derived in Sec. III. From the corre-
sponding density matrix �=exp�−H / �kBT�� we obtain �Sz�T,B
and �Jz�T,B. Within the molecular-field approximation, the ex-
change splitting of the conduction-band edge for uncompen-
sated GaAs:Mn becomes

��s�T,B� = xN0�− ��Sz�T,B + Jeh�Jz�T,B� , �2�

where the second term arises from the coupling �Jeh /V�s ·J
between the spin s of a band-edge electron and the angular
momentum J of holes bound to Mn acceptors �V is the vol-
ume of the sample�. As shown in Secs. IV and V, this inter-
action is characterized by the s-p exchange energy N0Jeh
=−0.51�0.17 eV. Hence, for the expected values of N0�,
the s-p exchange dominates over the s-d interaction. Further-
more, because of an antiferromagnetic sign of the p-d ex-
change interaction, �Sz�T,B / �Jz�T,B	0, the apparent coupling
between the electron and Mn complex is antiferromagnetic.
In particular, adopting N0�=0.219 eV we obtain the field
dependence of electron-spin splitting shown in Fig. 1.

We recall that the data on the photoelectron precession
frequency7–9 were interpreted neglecting the presence of the
bound holes �Jeh=0� as well as by treating both N0� and T in

the Brillouin function BS�T ,B� for S=5 /2 as adjustable
parameters.7–9 Proceeding in the same way we can describe
our theoretical results very well with N0��app�=−20 meV,
Teff=22 K, as shown by dashed line in Fig. 1. We see that
the present theory explains why the small antiferromagnetic
apparent exchange energy N0��app�=−20�6 meV and en-
hanced temperature Teff=20�10 K were found
experimentally.8,9

It is worth noting that if the contributions of the two terms
determining spin splitting compensate each other, the fitted
values of N0��app� and Teff become correlated, so that only
their ratio can be determined accurately. However, this cor-
relation affects little the experimentally determined band-
edge value of N0��app� as it comes from the extrapolation of
the data obtained for samples with finite quantum well width,
in which the magnitudes of spin splitting are relatively large.

In addition to explaining the magnitude of spin splitting,
the large value of the s-p exchange energy Jeh implied by our
theory elucidates, as demonstrated recently,11 why the spin-
relaxation time in GaAs:Mn can be by two orders of magni-
tude longer than that in GaAs containing a similar concen-
tration of Ge acceptors.

When the bound hole concentration is diminished by do-
nor compensation, the relative importance of the s-p ex-
change decreases. This can be the case of a Ga1−xMnxAs
sample with x=0.1%, where N0��app�= +23 meV, according
to spin-flip Raman scattering.14 Even a lower value �N0��
=14�4 meV was found by analyzing the effect of the elec-
trons on the Mn longitudinal relaxation time T1 in
n-Ga1−xMnxN with x�0.2%.13 The interpretation of the data
was carried out13 neglecting possible effects of the
relaxation-time bottleneck,18 which increases the apparent
T1. It can be shown, however, that for the expected magni-
tudes of electron spin-flip scattering times in wurtzite
GaN:Mn,19,20 this effect leads to an underestimation of the
�N0�� by less than a factor of 2. On the other hand, as dem-
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FIG. 1. Theoretical values of the electron spin-splitting energies
��s�B� /x �solid line� computed as a function of the magnetic field
at 5 K. Dashed line represents fitting to the solid line obtained by
treating the apparent s-d exchange energy N0��app� and temperature
Teff as adjustable parameters within the model that neglects the
presence of the electron-hole exchange interaction �Jeh=0�.
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onstrated in Sec. VI, the presence of positively charged do-
nors shifts the electron wave function away from negatively
charged Mn acceptors, which results in a rather strong reduc-
tion in the magnitude of the apparent s-d exchange integral
in the relevant range of Mn concentrations in n-�Ga,Mn�N
and compensated �Ga,Mn�As.

III. MODEL OF THE MANGANESE ACCEPTOR

The components F
� of the envelope function of the
bound hole in the state ���, �= 3

2 , 1
2 ,− 1

2 ,− 3
2 , are16

F
��r� = ��
R0�r�Y00��,
�

+ �	3

2
,
;2,�� − 
�	3

2
,�
R2�r�Y2,�−
��,
� ,

�3�

where 
= 3
2 , 1

2 ,− 1
2 ,− 3

2 is the subband index �jz�. Accordingly,
the spin-3

2 angular-momentum matrices j� act on the index 
,
while J� act on the index �. The radial functions R0�r� and
R2�r� are obtained from the Baldareschi-Lipari equations by
using a numerical solver of ordinary differential equations
employing the standard values of the Luttinger parameters,
�1=6.85, �2=2.1, �3=2.9, and �=1.2 �Ref. 21�. In order to
model the Mn acceptor in GaAs we take ��=10.66 as the
dielectric constant and the Gaussian central-cell potential
with r0=2.8 Å. The depth of the central-cell correction V0 is
chosen so that the binding energy without the exchange con-
tribution is 86.15 meV �Ref. 16�. We will use f�r�
=R0�r� /�4�, g�r�=R2�r� /�4�, normalized as �0

�4�r2�f�r�2

+g�r�2�dr=1. The functions f�r�, g�r� are shown in Fig. 2.
Since both heavy and light hole masses are relevant, the

spatial decay of the bound hole wave function is not charac-
terized by a single exponent. An effective Mn acceptor Bohr
radius calculated from the participation ratio is 0.76 nm for
the wave function determined above. This agrees with the
spatial extend of the probability density observed by scan-
ning tunneling microscopy for the hole bound to Mn accep-
tor in GaAs.15

Now we calculate the Landé factor of the hole bound by
the Mn acceptor, starting from the definition of the magnetic

moment, M�=−�Hsph /�B� �B=0, where Hsph is the hole
Hamiltonian in the spherical approximation,

Hsph =
�2

m

1

2
�1k2 − �̄�� jx

2 −
1

3
j2�kx

2 + c . p .�
− 2�̄��jx, jy��kx,ky� + c . p .�� −

e�

m
�j · B , �4�

in which �A ,B�= 1
2 �AB+BA�, �̄= �2�2+3�3� /5, k�=−i �

�x�

−
eA�

� , and the vector potential in the axial gauge is A�

=����B�x� /2. We have

M� =
e�

2m

�1����x�k� − 2�̄��j�, j�� −

1

3
���j2�����x�k��

+
e�

m
�j�. �5�

We substitute x� and k� in the spherical coordinates: x
=r sin � cos 
, y=r sin � sin 
, z=r cos �, kx=
−i�sin � cos 
�r+ 1

r cos � cos 
��− 1
r sin �sin 
�
�, ky =

−i�sin � sin 
�r+ 1
r cos � sin 
��+ 1

r sin �cos 
�
�, kz=
−i�cos ��r− 1

r sin � ���. Finally, by acting with M� on F
� and
performing the integration over � and 
 we obtain

����M���� =
e�

2m

4

5
�

0

�

4�r2dr

� �g�r����1 − 2�̄�g�r� − �̄rf��r��

+ �̄f�r��3g�r� + rg��r���J�;��� +
e�

m
�����j���� ,

�6�

where the value of the integral over r is −3.28. Therefore,
gh=−� 4

5 · �−3.28�+2� ·0.78�=0.75, in a good agreement with
the values given in Ref. 22 �observe the opposite sign con-
vention�. Moreover, substituting g1�=gh and g2�=−0.07 into
the Eq. �3� of Ref. 23 yields gJ=2.80, in a good agreement
with the experimental value of the complex g factor, gJ
=2.77.

IV. SHORT-RANGE s-p EXCHANGE

We now derive a form of the short-range s-p exchange
interaction between a conduction-band electron and a hole,
which is valid for any localization radius of the hole. We
make use of the known value of the free exciton exchange
splitting � and the exciton Bohr radius aX. Neglecting cubic
terms of the form jx

3sx+ jy
3sy + jz

3sz, we obtain for the Hamil-
tonian of the short-range interaction a formula similar to Eq.
1 of Ref. 24,

Hx = −
1

2
�aX

3��s · j���rh − re� , �7�

where �=0.006 meV �Ref. 25, sign convention according to
Ref. 26� and aX=12 nm.

In the present case, we consider the coupling of a
conduction-band electron to a hole bound to the Mn accep-

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.2

0.0

0.2

0.4

0.6

0.8

1.0
w

av
e

fu
nc

ti
on

co
m

po
ne

nt
s

r [nm]

f

g

FIG. 2. The components of the acceptor wave function �see the
main body of the text for the definition of the functions f and g�.
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tor. Hence, we calculate the matrix elements
�ke ,�� ;���Hx�ke ,� ;��, where ke is the electron wave vector,

�re�ke� =
1

�V
eike·re, �8�

� is the electron spin, and � numbers the spin states of the
bound hole. Since

�ke���rh − re��ke� =
1

V
�9�

and

����j���� = ��f2� +
1

5
�g2��J�;���, �10�

where �f2�=�0
�4�r2f�r�2dr etc., we obtain

HSR = −
1

2
�

�aX
3

V ��f2� +
1

5
�g2��s · J , �11�

casting the short-range interaction into the required form in-
volving J, not j. The numerical value is �f2�+ 1

5 �g2�=0.78. A
similar reduction factor of the acceptor splitting was ob-
tained previously for a variational wave function.27 It ap-
peared also in the case of DMS nanocrystals.28 This value
yields −0.28 eV as the contribution of the short-range inter-
action to N0Jeh.

V. LONG-RANGE s-p EXCHANGE

The long-range interaction operator is given by29

Hm�n�,mn
a �r1�r2�,r1r2� = − �

�,�
Qm�Kn,Kn�m

�� �2V�r1 − r2��
�r1� � r1�

���r1 − r2���r1� − r2�� , �12�

Qm�Kn,Kn�m
�� =

�2

m2Eg
2 pm�Kn�

� pKnm
� , �13�

where V�r�=e2 / �4���0r� is the Coulomb potential. In par-
ticular, for an exciton with momentum K in the spin state j,
the matrix element of this operator is

�j�K��Ha�jK� =
e2

��0

�2

m2Eg
2
 j�
 j

��KK�, �14�

where 
 j =�mn���n�pmKn
� ��fKmn

j �0�, n=K /K, and fK
j �r� is the

envelope function describing the relative motion of the elec-
tron and the hole in an exciton in the state �jK�.

We consider an exciton with the electron in the conduc-
tion band and the hole in the uppermost valence band of the
�8 symmetry. The canonical basis for the latter is u1= � 3

2 , 3
2 �,

u2= � 3
2 , 1

2 �, u3= � 3
2 ,− 1

2 �, u4= � 3
2 ,− 3

2 �,

u1 = −
1
�2

�X + iY�↑ , �15�

u2 =
1
�6

�− �X + iY�↓ + 2Z↑� , �16�

u3 =
1
�6

��X − iY�↑ + 2Z↓� , �17�

u4 =
1
�2

�X − iY�↓ . �18�

The time inversion operator acts as follows: K̂ui=� jK jiuj,
where the matrix K is

K =�
0 0 0 i

0 0 − i 0

0 i 0 0

− i 0 0 0
� . �19�

It is convenient to use instead of �=x ,y ,z the index a
=−1,0 , +1, with n+1=−�nx+ iny� /�2, n0=nz, n−1= �nx
− iny� /�2. Then we can express the momentum matrix ele-
ments in terms of Clebsch-Gordan coefficients:

�
�

n�pmKn
� = P�

n�
�

a

�4�

3
Y1a�n��	1,a;

1

2
,m	3

2
,n�
Kn�n,

�20�

where P= �S�Pz�Z�. Assuming ground-state hydrogen wave
functions for the envelope functions of the relative motion,

we have fKmn
j �0�= ��aX

3�− 1
2 �j � 1

2 ,m ; 3
2 ,n�. Again, Clebsch-

Gordan coefficients have been used and �j�= �J ,Jz�, where J
is the exciton spin �J=1,2�. We have 
�2,Jz�

=0, 
�1,a�

= �2i /�3�P��aX
3�− 1

2 na. Therefore, �
�2= 4
3

P2

�aX
3 and we obtain

the formula for the longitudinal-transverse exciton
splitting,26

�LT =
4

3

e2

��0

�2P2

m2Eg
2

1

�aX
3 . �21�

Now we can express the strength of the long-range interac-
tion in terms of �LT,

Qm�Kn,Kn�m
�� =

3

4
�LT�aX

3 ��0

e2

pm�Kn�
� pKnm

�

P2 , �22�

and calculate the matrix element

�ke,��;���Ha�ke,�;�� =
1

V� dr1�dr2�dr1dr2e−iker1�F
���
� �r2��

� H��
�,�

a �r1�r2�,r1r2�eiker1F
��r2� .

�23�

We use the following standard convention for the Fourier
transform:

f̃�k� =� dre−ik·rf�r� . �24�

Let

W��
,
���a� = − Q��
,
��
�� �2V�a�

�a� � a�

, �25�
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W̃��
,
���q� =
3

4
�LT�aX

3 q�q�

q2

p��
�
� �p�


� ��

P2 . �26�

Then, using the properties of the Fourier transform, we can
write the required matrix element as

�ke,��;���Ha�ke,�;�� =
1

V
�W̃��
,
�� � ��F̃
����

� · F̃
����− ke� ,

�27�

where � denotes the convolution

� f̃ � g̃��k� =� dq

�2��3 f̃�q�g̃�k − q� . �28�

In particular, for ke=0,

������Ha���� =
3

4
�LT

�aX
3

V �� dq

�2��3

� �F̃
����q���
qa

q
�	1,a;

1

2
,��	3

2
,��
K��,
�

� K�,

� �	1,b;

1

2
,�	3

2
,�
�qb��

q
F̃
��q� ,

�29�

where the sum is over a ,b ,
 ,� ,
� ,��. To calculate this inte-
gral, Fourier transforms of the envelope functions in the
spherical coordinates are needed. For f�r�= f�r�Ylm�r /r�,
f̃�k�= f̃�k�Ylm�k /k�, where f̃�k�=�0

�4�r2drf�r�Ql�kr�, and

Ql�kr� =
1

2
�

−1

1

dxe−ikrxPl�x�=�− i�l jl�kr� . �30�

For l=0 and 2,

Q0�kr� =
sin kr

kr
, �31�

Q2�kr� =
3kr cos kr + �k2r2 − 3�sin kr

k3r3 . �32�

The functions f̃�k� and g̃�k� are shown in Fig. 3. Now we can
substitute the Fourier transforms into the integral and sepa-
rate the radial and the angular integration.

By using the above results we obtain,

HLR = −
1

6
�LT

�aX
3

V
�� f̃2� − 2� f̃ g̃� + �g̃2��s · J , �33�

where � f̃2�= �2��−3�0
�4�q2 f̃�q�2dq etc. To compute � f̃ g̃�, one

can use the identity �r1 ,r2�0�

1

�2��3�
k=0

�

4�k2dkQ0�kr1�Q2�kr2�

=
1

4�
���r2 − r1�

r1r2
−

3��r2 − r1�
r2

3 � , �34�

from which it follows immediately that

� f̃ g̃� = �fg� − 12��
0

�

dr2�
0

r2

dr1
r1

2

r2
f�r1�g�r2� . �35�

The numerical values are �LT=0.08�0.02 meV �Refs. 30
and 31� and

1

6
�� f̃ 2� − 2� f̃ g̃� + �g̃2�� = 0.024. �36�

Hence, the contribution of the long-range s-p interaction to
N0Jeh is −0.23 eV, of the same order as the short-range part.
Taking into account experimental uncertainty of the relevant
parameters �we assume a 1 nm error of aX and a 2 �eV error
of �� we obtain the total magnitude of the electron-hole ex-
change energy N0Jeh=−0.51�0.17 eV.

For ke�0, the spherical symmetry is broken and HLR can
no longer be cast into the form s ·J.

VI. APPARENT s-d EXCHANGE IN n-TYPE CASE

So far we have considered p-type systems, in which the
interaction of photoelectrons with neutral Mn complexes is
relevant. Now we examine compensated III-V Mn-based
DMSs, in which the electron concentration n is greater than
that of Mn impurities. In such samples of GaN:Mn and
GaAs:Mn, strongly reduced magnitudes of the s-d exchange
integral have been found by electron-spin resonance,13 and
by spin-flip Raman scattering,14 respectively.

We note that in such samples Mn acceptors are ionized.
Also ionized are donors, as the electron concentration corre-
sponding to an insulator-to-metal transition is relatively low
in the case of the conduction-band carriers. The presence of
the corresponding repulsive and attractive Coulomb interac-
tions means that the probability of finding a conduction-band
electron at the core of the magnetic ion is reduced, and hence
the apparent value of the exchange energy �the observed spin
splitting� is diminished. It is worth noting that the possibility
that the Coulomb potentials could affect the apparent value
of the exchange integrals has already been mentioned in the
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FIG. 3. The components of the acceptor wave function in the
momentum representation �see the main body of the text for the

definition of the functions f̃ and g̃�.

ELECTRON-HOLE CONTRIBUTION TO THE APPARENT… PHYSICAL REVIEW B 78, 165205 �2008�

165205-5



context of divalent Mn in GaN,13 and trivalent Fe in HgSe.32

To evaluate a lower limit of the effect we neglect the
presence of compensating donors and calculate the apparent
s-d exchange integral ��app� for an electron subject to the
repulsive potential generated by the unoccupied Mn accep-
tors. We follow a Wigner-Seitz-type approach put forward by
Benoit à la Guillaume et al.33 to describe the interaction of
the carrier spin with the Mn ions in the case of the strong-
coupling limit, that is when the depth of the local Mn poten-
tial is comparable to the carrier bandwidth. It has been found
in the subsequent works34,35 that the corrections to the
Wigner-Seitz approach caused by a random distribution of
Mn ions are quantitatively unimportant.

We consider a Mn ion with the 5/2 spin S� i located at R� i,
which interacts with the carrier via the Heisenberg term I�r�
−R� i�s� ·S� i. The form of the function I�r�−R� i� makes the inter-
action local: it vanishes outside the core of the Mn ion. For

simplicity, I�r�−R� i�=a��b− �r�−R� i��. The exchange energy is
then �=�d3r�I�r��=a · 4

3�b3. Moreover, in case of III-V com-
pounds considered here, the impurity generates an electro-
static potential. If screening by the electrons is present, as
in case of n-Ga1−xMnxN, this potential is
e2 exp�−�r� / �4���0r�, where � is the static dielectric con-
stant, and the screening parameter � is given by �2

=e2N�EF� / ��0��, where N�EF�= 3
2n /kTF �see Ref. 36, §5.2�.

For the Ga1−xMnxN samples,13 n�1019 cm−3 corresponds to
TF�890 K �EF�0.12 eV�, and therefore 1 /��1.6 nm.

In the spirit of the Wigner-Seitz approach we assume that
the carrier energy E and the envelope function ��r� are given
by the ground state s solution of the one-band effective-mass
equation which contains the potential U�r� created by the
magnetic ion located at r=0. The standard one-impurity
boundary condition ��r�→0 for r→� is replaced by the
matching condition ���r�=0 at r=R to take into account the
presence of other magnetic ions. The value R is determined
by the concentration of the magnetic ions x according to the
equation �4�R3 /3�−1=N0x. The exchange interaction is mod-
eled by a square-well potential U��b−r� superimposed on
the electrostatic potential of an elementary charge located at
r=0. The potential U= �

5
4a is, of course, different for spin-

down and spin-up carriers.
We first ignore free-carrier screening, �→0. The solution

of the time-independent Schrödinger equation for the
conduction-band electron in then

��r� = c0 exp�− �r���1 +
A

�
;2;2�r� � c0f �37�

for 0	r	b, and the following linear combination for b
	r	R

��r� = c1 exp�− ��r���1 +
A

��
;2;2��r�

+ c2 exp���r���1 −
A

��
;2;− 2��r�

� c1g + c2h , �38�

where A=e2m� / �4���0�2�, �= �2m��U−E��
1
2 /�, ��

= �2m��−E��
1
2 /� �notice that changing the sign of � leaves �

invariant, while changing the sign of �� interchanges c1 with
c2; also, � and � are not in general linearly independent�.
We used the symbols �, � for the confluent hypergeometric
functions 1F1�a ;b ;z�, U�a ;b ;z� �Ref. 37�. The constants c0,
c1, c2 are determined by the continuity conditions ��b−�
=��b+�, ���b−�=���b+�. Solving those two equations we ob-
tain an equation for E,

wf ,h�b�g��R� − wf ,g�b�h��R�
wg,h�b�

= 0, �39�

where by wf ,g we denoted the Wronskian fg�− f�g.
We assume the following parameters for Ga1−xMnxN:

m�=0.22me, N0=4.38�1022 cm−3=0.006495 a.u., �=8.9;
and the following for Ga1−xMnxAs: m�=0.067me, N0=2.21
�1022 cm−3=0.003281 a.u., �=12.9. In the experiments,
samples were used with 0.01%�x�0.2% of Mn in GaN,13

and with 0.0006%�x�0.03% of Mn in GaAs.7 Those con-
centrations correspond to R up to about 75 a.u. for GaN and
up to about 250 a.u. for GaAs.

To visualize the effect of the Coulomb term in the Mn
potential, we have calculated the energies and wave func-
tions including the additional Coulomb term for both GaN
�b=2 a.u.�0.1 nm, a=0.0371 a.u.=1.0 eV� and GaAs �b
=2 a.u.�0.1 nm, a=0.0735 a.u.=2.0 eV�. These param-
eters correspond to N0�=0.22 eV. We have found that when
calculating ��app� /�, the details of the exchange potential
�like the values of b and � within the expected range� are not
quantitatively important.

In order to take into account the fact that the core and
lattice polarizability decrease at small distances, �→1 for r
→0 we interpolate ��r� between ��0�=1 and the macro-
scopic value attained at a distance of the bond length. The
assumed dependence, presented in Fig. 4, is similar to that of
the Thomas-Fermi model.38 When �=��r� and/or free-carrier
screening is included, we find the solution ��r� of the
Schrödinger equation for the given potential U�r� numeri-
cally, as the Eqs. �37� and �38� are only valid for the Cou-
lomb potential. Then, the spin splitting for a given value of x
�or for the corresponding R� is evaluated as the difference of
the energy E calculated for the spin-up and spin-down carri-
ers from the equation ���R�=0. Here, ��r� is the numerical
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FIG. 4. The assumed dependence of the dielectric constant � on
the distance r to an ionized acceptor.
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solution of the Schrödinger equation with the potential that is
different for spin-up and spin-down carriers.

The results of our calculations of ��app� /� as a function of
the Mn ion concentration x are presented in Fig. 5
�Ga1−xMnxN� and in Fig. 6 �Ga1−xMnxAs�. Independently of
assumptions concerning screening, in both materials ��app� /�
diminishes significantly when x decreases, up to factor of 3
in the experimentally relevant range of x. However, this re-
duction of ��app� /� is still smaller than that seen
experimentally,13,14 presumably because of an additional ef-
fect coming from the presence of attractive potentials
brought about by compensating nonmagnetic donors.

VII. SUMMARY AND OUTLOOK

In order to understand the magnitude of the spin splitting
of photoelectrons in Mn-based III-V DMSs, we have devel-
oped theory of the s-p exchange interaction between
conduction-band electrons and holes localized on Mn accep-
tors, taking into account both short- and long-range contri-
butions. According to our results, this exchange overcompen-
sates the s-d interaction of the electrons with the Mn spins,
making the resulting coupling to be antiferromagnetic. The
theory describes, employing the standard value of the s-d
exchange energy N0�=0.22 eV, the recent results on
spin-splitting7–9 and spin-relaxation time11 of photoelectrons
in GaAs:Mn with low Mn concentrations.

In view of our work, it would be remarkable to carry out
Zeeman spectroscopy on nonmagnetic p-type semiconduc-
tors on the insulating side of the insulator-to-metal transition,
where a large exchange splitting of the conduction band by

the bound holes is predicted by the present theory. It would
also be interesting to put forward an ab initio approach cap-
turing such an effect. Finally, we note that the confinement-
induced changes in the symmetry of the electron wave func-
tion explain,6,9 via the sp-d kinetic exchange, the
corresponding experimentally-revealed growth of the antifer-
romagnetic contribution to the exchange integral.7–9 The
question about the role of the simultaneously appearing p-p
exchange is opened to further studies.

Furthermore, we have considered the interaction of
conduction-band electrons with Mn ions in compensated
n-type III-V DMSs, taking into account the electrostatic po-
tential created by the magnetic ions. A substantial reduction
in the magnitude of the apparent exchange energy has been
found at low Mn concentrations, and interpreted as coming
from the decrease of the carrier probability density at the
core of the magnetic ion caused by the electrostatic repul-
sion. It has been suggested that this effect, enhanced by an
attractive potential of compensating donors, accounts for re-
duced values of the exchange spin splitting observed experi-
mentally in compensated III-V DMSs containing a minute
amount of Mn.13,14 In view of our findings, the presence of
electrostatic potentials associated with magnetic ions makes
that the apparent exchange energies should not be viewed as
universal but rather dependent on the content of the magnetic
constituent and compensating donors.
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